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ABSTRACT: The differential reflectivity (ZDR) column is a notable polarimetric signature related to updrafts in deep
moist convection. In this study, pseudo–water vapor (qy) observations are retrieved from observed ZDR columns under the
assumption that humidity is saturated within the convection where ZDR columns are detected, and are then assimilated
within the 3DVar framework. The impacts of assimilating pseudo-qy observations from ZDR columns on short-term severe
weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that the ZDR columns are mainly
located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qy observations leads to an enhance-
ment of qy within the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate
that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of
pseudo-qy from ZDR columns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling
assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both loca-
tion and intensity. Analysis of thermodynamic fields reveal that assimilating ZDR columns provides more favorable initial
conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near
the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitiv-
ity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qy observations from ZDR columns using
the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms.
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1. Introduction

Convective-scale severe weather, characterized by rapid evolu-
tion, high nonlinearity, and low predictability, causes significant
loss of life and property worldwide each year. There has long
been a focus on research and operational efforts to improve
convective-scale numerical weather prediction (NWP). This im-
provement heavily depends on accurately representing fast-
evolving convective storms in initial conditions through
assimilating high-resolution observations at a high frequency.
Radar data are among the most crucial observations in
convective-scale data assimilation (DA), as they provide in-
ternal dynamic and microphysical information about storms
with high temporal and spatial resolution. Much effort has
been dedicated to assimilating radial velocity and reflectivity
data from Doppler radar. It is widely acknowledged that as-
similating radar data can effectively enhance short-term pre-
dictions of severe weather (see Sun et al. 2014; Gustafsson
et al. 2018 for a review).

Compared to radial velocity, assimilating reflectivity presents
greater challenges, in part because reflectivity is not typically a
model state variable. This has prompted the exploration of vari-

ous methods to optimally assimilate reflectivity data into
NWP models. Two primary approaches can be used to assimi-
late reflectivity. Because radar reflectivity is determined in
part by the size distribution of precipitation particles, assimi-
lating hydrometeor contents directly related to reflectivity
data is a natural choice. Some studies opt to directly assimi-
late reflectivity data to analyze hydrometeors by using a
reflectivity observation operator. These operators convert hy-
drometeors from model space to the equivalent reflectivity in
observation space, and can be used with either variational
methods (Sun and Crook 1997; Xiao et al. 2007; Gao and
Stensrud 2012; Wang and Wang 2017) or the Ensemble Kal-
man Filter (EnKF) method (Tong and Xue 2005; Xue et al.
2006, 2010). Other studies assimilate hydrometeors derived
from reflectivity. This was initially attempted using the Local
Analysis and Prediction Systems (LAPS; Albers et al. 1996),
where hydrometeor classifications and updates within a 3D
cloud region were based on the microphysical scheme. This
method was later widely adopted by the Rapid Update Cycle
(RUC; Benjamin et al. 2004) and High-Resolution Rapid Re-
fresh (HRRR) (Smith et al. 2008). Hydrometeor contents re-
trieved from reflectivity data can also be assimilated using
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variational methods (Sun and Crook 1998; Wang et al. 2013).
To minimize hydrometeor retrieval errors, some research inte-
grates additional information, such as flash extent density data
from geostationary satellites (Fierro et al. 2016, 2019; Wang et al.
2018; Hu et al. 2020), dual-polarization radar (Ding et al. 2022),
and background hydrometeor fields (Chen et al. 2020, 2021).

Beyond analyzing hydrometeors from radar reflectivity,
assimilating other model state variables derived from reflec-
tivity data, such as temperature and moisture, is also an active
area of research. Water vapor mixing ratio (qy) in the model
initial conditions has been found to have a greater impact on
convective-scale NWP than the hydrometeor fields (Fabry
and Sun 2010; Ge et al. 2013), as it influences the formation of
clouds, precipitation patterns, and energy exchange within
convection. If qy is accurately represented in the initial condi-
tions, a more reasonable physical balance can be achieved in
the analysis, sustaining the positive impact of radar data as-
similation (DA). Given the physical importance of moisture
modification over hydrometeor modification, numerous stud-
ies have focused on assimilating humidity information re-
trieved from reflectivity data.

Caumont et al. (2010) introduced a 1D13DVar method
that converts reflectivity into profiles of relative humidity us-
ing Bayesian theory. This approach has been successfully
applied to models such as Météo-France’s AROME model
(Wattrelot et al. 2014), and the Japan Meteorological Agency’s
JNoVA system (Ikuta and Honda 2011). Wang et al. (2013)
transformed reflectivity into qy by assuming saturation within
convection, and implemented this method in the WRFDA
system, which has been incorporated into an operational sys-
tem at the Beijing Urban Research Institute. Lai et al. (2019)
utilized the vertically integrated liquid (VIL; Greene and
Clark 1972) to retrieve humidity, resulting in more consistent
reflectivity and updraft helicity forecasts for two tornado
events when compared to the experiments without using VIL. In
reality, the relationship between reflectivity and qy is complex,
and inferring qy solely using radar reflectivity observations intro-
duces substantial uncertainty. Our ongoing research aims to incor-
porate additional information, such as dual-polarization radar
observations, to address these challenges.

After decades of research and development, radar polarim-
etry is quite mature. The U.S. operational WSR-88D network
has been upgraded to dual-polarization (Kumjian 2013a),
and other countries have also deployed or are in the pro-
cess of upgrading their radar networks to dual-polarization
(Zhang et al. 2019). Compared to conventional weather radar,
dual-polarization weather radars transmit and receive electro-
magnetic waves in both horizontal and vertical orientations
(polarization). Consequently, they can provide more compre-
hensive information about hydrometeor scatterers, including
particle size, shape, and orientation (Bringi and Chandrasekar
2001) through the combined use of radar variables such as
horizontal reflectivity (Z), differential reflectivity (ZDR), spe-
cific differential phase (KDP), and correlation coefficient (rhv).

Dual-polarization radar has been leveraged for numerous
applications, including severe weather detection, hydrome-
teor classification, quantitative precipitation estimation, and
DA (see Zhang et al. 2019 for a review). For dual-polarization

radar DA, substantial progress has been made on improving
the hydrometeor initial field (Li and Mecikalski 2010, 2012;
Posselt et al. 2015; Li et al. 2017; Kawabata et al. 2018; Zhang
et al. 2021; Du et al. 2021). However, as previously men-
tioned, the benefits of assimilating hydrometeors alone may
diminish rapidly, particularly in the 3DVar method; assimilat-
ing qy information inferred from dual-polarization radar data
may have a larger and sustained impact and warrants explora-
tion (Caumont et al. 2010).

Augros et al. (2018) extended the Bayesian approach to in-
corporate dual-polarization radar data and found that the
addition of KDP resulted in a more plausible humidity analy-
sis field. This adjustment had a slightly positive effect on
convective-scale precipitation forecasting. ZDR columns are
commonly observed within or on the periphery of updrafts in
deep moist convection. These updrafts lift supercooled rain-
drops and wet ice particles, leading to the occurrence of
large ZDR values above the 08C isotherm (Kumjian 2013b;
Kumjian et al. 2014; Snyder et al. 2015; Evaristo et al. 2022).
Building upon the relationship between ZDR columns and
deep moist convection updrafts, Carlin et al. (2017), hence-
forth referred to as CJ17, used a modified complex cloud
analysis to adjust qy and latent heating within convection
where ZDR columns were detected. The study demonstrated
that incorporating ZDR column observations into the cloud
analysis system improved the analysis and prediction of convec-
tion. However, CJ17 employed only a single dual-polarization
radar for each case examined. Furthermore, the assimilation of
ZDR columns was performed using the cloud analysis method,
which does not adequately account for background errors and
observation errors in the DA process.

In this study, pseudo-qy observations are retrieved based on
ZDR columns identified through a mosaic of data from multiple
radar sites. These observations are then assimilated using the
3DVar framework with the aim of assessing the impact of these
retrievals on convective-scale DA and forecasting. Section 2
provides an introduction to the 3DVar method, ZDR column
detection, and the qy retrieval scheme. The model configura-
tion and experimental setup are detailed in section 3. Section 4
describes the sensitivity experiments conducted on a squall-line
case to optimize the assimilation of pseudo-qy observations
from ZDR columns. The quantitative evaluation of four severe
cases is presented in section 5. Finally, section 6 offers a sum-
mary and discussion.

2. Methodology

a. The 3DVar system

In this study, a 3DVar system that was initially developed
by the Center for Analysis and Prediction of Storms (CAPS;
Gao et al. 1999, 2004; Hu et al. 2006a,b; Ge et al. 2010) spe-
cifically for convective-scale radar DA is employed. This
system was further refined at the National Severe Storms
Laboratory (NSSL; Gao and Stensrud 2012; Gao et al.
2013; Hu et al. 2021). The optimal solution of the 3DVar is
obtained by minimizing a cost function that quantifies the
discrepancy between the observations and background
valid at the analysis time:
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J(x) 5 1
2
(x 2 xb)TB21(x 2 xb)

1
1
2
{y 2 H(x)}TR21{y 2 H(x)} 1 Jc(x), (1)

where the vectors x, xb, and y represent the analysis state,
background state, and observations, respectively; H denotes
the nonlinear observation operator, which transforms x into
its equivalent in the observation space; B and R stand for the
background error covariance and observation error covari-
ance matrices, respectively; and Jc is a regularization term
that allows the imposition of any weak constraint, resulting in
a more balanced analysis.

Due to its relatively lower computational cost and demon-
strated benefits (Chen et al. 2021), the indirect assimilation
method is chosen in this study. In the indirect method, hydro-
meteors and qy are first retrieved from reflectivity and the
dual-polarization variables. Subsequently, these retrieved
pseudo-observations are incorporated into the cost function
represented by the second term on the rhs of Eq. (1):

J(qh) 5
1
2
(qh 2 qoh)TR21

qh
(qh 2 qoh), (2)

J(qy ) 5
1
2
(qy 2 qoy )TR21

qy
(qy 2 qoy ), (3)

where qh and qy denote the analysis of hydrometeor mixing
ratios (rainwater, snow, and graupel) and water vapor mixing
ratio, respectively; the superscript “o” signifies the corre-
sponding pseudo-observations; and Rqh

and Rqy
represent the

observation error covariances for hydrometeors and qy, re-
spectively. The technique for retrieving hydrometeors and qy
is described in section 2c.

b. ZDR column detection

Dual-polarization radar data from the Next Generation
Weather Radar (NEXRAD) network undergo quality control
before being mapped to the model space, following the same

procedure as described in CJ17. Subsequently, dual-polarization
data from multiple radar sites are merged, producing three-
dimensional mosaicked dual-polarization observations Z, ZDR,
KDP, andrhv. During the merging, reflectivity is set as the high-
est value from all radars, and the grid with the highest reflec-
tivity value is chosen for the corresponding ZDR, KDP, and rhv
values.

Following Snyder et al. (2015) and CJ17, several criteria are
established to ascertain whether a horizontal model grid point
observes a ZDR column (summarized in Table 1):

1) Areas of interest are confined to regions where the envi-
ronmental temperature is between 2208 and 08C. This
temperature constraint is used as ZDR columns extend
from the 08C isotherm toward colder temperatures, and
to help isolate the impact of high ZDR from other sources,
such as pristine ice crystals at cloud top.

2) rhv is required to be above 0.85 to ensure a meteorologi-
cal signal is detected.

3) Within a 3 3 3 grid box centered on a grid point, the
maximum value of composite reflectivity should exceed
30 dBZ. The criterion employed in this study is more
stringent than that in CJ17 to minimize the chance of false
detection, which could lead to predictions of spurious
convection.

4) The observed ZDR must fall between 1 and 5 dB for more
than two vertically adjacent grid boxes above the environ-
mental 08C level. The 5-dB threshold is set to limit the in-
fluence of pristine ice particles, which can contribute to
large ZDR values (Hogan et al. 2002). Additionally, the
bottom of the ZDR column should be situated within 300 m
above the freezing level (08C).

Following CJ17, a horizontal mode filter of 3 km 3 3 km is
applied to mitigate false detections. If at least five of the grids
within the 3 3 3 area meet the aforementioned criteria, that
grid is counted as a ZDR column. The two-dimensional ZDR

column depth in model space is then used for the qy retrieval.

c. Pseudo-hydrometeor and water vapor observations

Pseudo-hydrometeors, including rainwater, snow, and
graupel mixing ratios, are retrieved from Z data using a
background-dependent hydrometeor retrieval scheme (Chen
et al. 2020). This scheme integrates background microphysical
information to diagnose the contributions of each hydrometeor
species to the total reflectivity.

The humidity control variable of the 3DVar system is qy.
Therefore, we choose to retrieve pseudo-qy observations
from the ZDR columns. If a ZDR column is observed, and its
depth exceeds two model levels, saturation is assumed within

TABLE 1. Summary of the criteria for ZDR column detection.

Variable Criteria

T 2208 # T # 08C
Z The max composite reflectivity within a

neighborhood 3 3 3 grid box is above 30 dBZ
rhv rhv $ 0.85
ZDR More than two continuous levels observed ZDR

between 1.0 and 5.0 dB with vertical continuity;
the bottom level is within 300 m of the 08C level

TABLE 2. Summary of four selected cases in May 2019.

Event date SPC outlook category No. of tornados, hail reports Primary states affected Primary storm mode

17 May Enhanced 46, 76 CO, NE, KS, OK, WY, SD Supercell
20 May High 28, 69 OK, TX, AR, KS, MO Mixed
22 May Moderate 43, 42 OK, TX, MO, KS, IL, IA Supercell
28 May Moderate 26, 79 OK, MO, NE, KS, AR, IL, IA Supercell
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the corresponding model column between the lifted conden-
sation level (LCL) and a “cloud top” height defined by a re-
flectivity threshold of 18.5 dBZ (following Fierro et al. 2016;
Lai et al. 2019). Given that the 3DVar method can propagate
the observations in the model space using the background er-
ror covariance (BEC) decorrelation scale, we have opted not
to directly adjust the qy field surrounding the ZDR column in
the retrieval process, as was done by CJ17 for the cloud analy-
sis approach. Furthermore, the ZDR column-based qy sup-
pression and temperature adjustment scheme in CJ17 are not
implemented in this study due to the absence of significant
positive impact. Instead, we employ a neighborhood no-rain
reflectivity assimilation approach (Gao et al. 2018) to mitigate
spurious convection. Under this approach, if the background
reflectivity surpasses 30 dBZ, yet reflectivity below 0 dBZ is

observed in over 75% of the surrounding grid points (within a
30 km 3 30 km 3 6-level area), pseudo-qy observations are
scaled down to 90% of the background specific humidity at
that grid point.

3. Experimental design

a. Four chosen severe weather events

In this study, four severe weather events occurring in May
2019 have been selected as the testing cases: 17, 20, 22, and
28 May. A summary of these cases is provided in Table 2,
which includes the dates, the Storm Prediction Center (SPC)
severe weather risk levels, SPC tornado and hail report
counts, as well as the storm mode for each of the four cases.
First, the 20 May squall-line event is studied in detail to

FIG. 1. The simulation domain, radar sites, and Storm Prediction Center (SPC) storm reports for (a) 17 May,
(b) 20 May, (c) 22 May, and (d) 28 May 2019. The red triangles, green rhombuses, and blue triangles represent reports
of tornados, hail, and damaging winds, respectively. NEXRAD sites’ locations and names are marked with black dots
and text labels.
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evaluate the impact of assimilating qy retrievals from ZDR col-
umns on the analyses and subsequent forecasts. Through a
series of sensitivity experiments, an optimal assimilation con-
figuration is identified. Subsequently, this configuration is ap-
plied to the four cases and a quantitative evaluation is carried
out to provide an objective assessment.

b. Model configuration

The NWP model used in this study is the Advanced Re-
search Weather and Forecasting (ARW-WRF) model V3.8.1
(Skamarock and Klemp 2008). The experimental configura-
tions for the four cases are nearly identical, differing primarily
in the chosen domain, which is determined by the locations of
the severe weather events. Figure 1 presents the simulation
domains for the four cases, along with reports of damaging
winds, hail, and tornadoes. The horizontal grid spacing is set
at 1.5 km, employing a grid of 6013 601 cells. The model con-
sists of 51 stretched vertical levels, with the model top posi-
tioned at 50 hPa. In line with the real-time settings of the
Warn-on-Forecast (WoF) system (Jones et al. 2018; Wang
et al. 2019), the selected physical parameterizations include
the Thompson microphysical scheme (Thompson et al. 2008),
Rapid Radiative Transfer Model for General circulation mod-
els (RRTMG) long-wave and short-wave radiation schemes
(Iacono et al. 2008), and the Yonsei University planetary

boundary layer (PBL) physics scheme (Hong et al. 2004). No
cumulus scheme is employed.

c. Experimental design

To assess the effects of assimilating pseudo-qy observations
from ZDR columns, several 15-min rapid cycling DA and fore-
casting experiments are conducted, following the schematic
diagram depicted in Fig. 2. All experiments are initialized
at 1900 UTC, with the initial and boundary conditions de-
rived from the High-Resolution Rapid Refresh (HRRR)
model forecast product (Smith et al. 2008). DA procedures
are executed from 1900 to 2300 UTC, with a frequency of
every 15 min. Except for the first cycle, the background
fields are determined by the 15-min forecast from the pre-
ceding DA cycle. A 3-h forecast is launched every hour from
2000 to 2300 UTC.

A multiple-pass procedure, as described by Gao et al.
(2013), is employed for assimilating the multisource and
multiscale observations. In the first pass, conventional obser-
vations from the Global Telecommunication System (GTS)
and Doppler radar Vertical Azimuth Display (VAD) winds
are assimilated using a horizontal BEC decorrelation scale of
60 km. In the second pass, radial velocity is assimilated with a
12-km decorrelation scale. In the third pass, retrievals of rain-
water, snow, and graupel mixing ratios from Z data are assim-
ilated with a 6-km decorrelation scale. In the final pass,
pseudo-qy observations obtained from both ZDR columns and
no-rain Z data are assimilated. Notably, VAD winds, radial
velocity, and hydrometeor retrievals from Z data are assimi-
lated at 15-min intervals, while conventional observations are
assimilated hourly. Following Chen et al. (2021), the pseudo-
hydrometeor observation errors are set to 0.1 g kg21. The as-
similated NEXRAD site locations for each case are shown in
Fig. 1.

To explore the optimal configuration for assimilating
pseudo-qy observations from ZDR columns, a series of sensi-
tivity experiments are undertaken. These experiments include
tests for observation error, decorrelation scale, and assimila-
tion frequency. The benchmark, labeled Exp-CNTL, serves as
the control experiment without ZDR assimilation. The other
experiments incorporate pseudo-qy observations under vari-
ous configurations.

The assessment of pseudo-qy observation error sensitivity
begins by comparing three experiments, Exp-ZDR, Exp-ZDR-
Err1p0, and Exp-ZDR-Err2p0, which use qy observation errors

FIG. 2. Schematic diagram depicting the 15-min rapid DA and
forecasting experiments. Observations include conventional
observations (denoted as “C”) and radar-related observations
(denoted as “R”), including radar VAD wind, radial velocity,
hydrometeor retrievals from Z, and qy retrievals from ZDR col-
umns. Various observations are assimilated in separate passes,
with the option of including pass 4 contingent upon the experi-
mental design.

TABLE 3. Summary of assimilation configurations used for all experiments.

Experiment
Observation error

for pseudo-qy (g kg21)
Horizontal length

scale (km)
ZDR columns assimilation

frequency (min)

Exp-CNTL No water vapor retrievals are assimilated
Exp-ZDR 0.5 6 15
Exp-ZDR-Err1p0 1.0 6 15
Exp-ZDR-Err2p0 2.0 6 15
Exp-ZDR-Len12 0.5 12 15
Exp-ZDR-Len18 0.5 18 15
Exp-ZDR-30m 0.5 6 30
Exp-ZDR-60m 0.5 6 60
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of 0.5, 1.0, and 2.0 g kg21, respectively. The evaluation of differ-
ent BEC decorrelation scales (6, 12, and 18 km) is carried out
through the comparison between Exp-ZDR, Exp-ZDR-Len12,
and Exp-ZDR-Len18. Another set of sensitivity experiments
aims to gauge the influence of diverse assimilation frequencies
for pseudo-qy observations from ZDR columns. Specifically,
assimilation frequencies of 15, 30, and 60 min are utilized for
Exp-ZDR, Exp-ZDR-30m, and Exp-ZDR-60m, respectively.
Table 3 provides an overview of the assimilation configura-
tions adopted in these experiments.

4. Case study on 20 May 2019

This section focuses on assessing the influence of assimilat-
ing qy retrievals from ZDR columns in the context of a squall-
line case on 20 May 2019. First, the impact of ZDR column
assimilation on the analysis field is examined by identifying ZDR

columns and analyzing qy increments. Subsequently, three distinct
sets of sensitivity experiments are conducted to determine the
optimal assimilation configurations. These configurations in-
clude variations in observation errors, horizontal decorrela-
tion scale, and assimilation frequency of the qy retrievals.

a. Identification of ZDR columns and water
vapor increments

Figures 3a and 3b displays the positions of identified ZDR

columns superimposed on the composite reflectivity at 2100
and 2300 UTC. At 2100 UTC, robust convection spanning
Kansas, Oklahoma, and Texas is beginning to merge into a
line. The majority of ZDR columns are situated within the
high-reflectivity zone, while a few isolated columns emerge in
areas characterized by relatively weaker reflectivity. The pres-
ence of ZDR columns signifies many updrafts in the system,
aligning with the high reflectivity areas (above 45 dBZ). By

FIG. 3. ZDR column identification indicated by observed reflectivity (shaded; dBZ) and ZDR (contoured; 1 dB) at
2 km AGL at (a) 2100 and (b) 2300 UTC, accompanied by a vertical cross section at (c) 2100 and (d) 2300 UTC along
the blue line marked in (a) and (b). The red lines in (c) and (d) denote the 08C level.
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2300 UTC (Fig. 3b), a mature squall line exists with a break in
the line around 100.58W. The intensity and extent of strong
echoes in the northern sector continues to escalate, while re-
flectivity in the southwest portion of the domain also intensi-
fies, impacting central Texas. A high density of ZDR columns
predominantly appear at the leading edge of the squall line,
correlating with high precipitation areas, and the isolated ZDR

columns are comparatively reduced, implying enhanced sys-
tem organization. Vertical cross-sections depicting the ZDR

values along the blue lines are illustrated in Figs. 3c and 3d.
At 2100 UTC, the ZDR columns are situated within the con-
vection cores, characterized by relatively shallow depths, in-
dicative of existing updrafts and ongoing cell development.
By 2300 UTC, the ZDR columns emerge on the inflow side of
the storm cell, displaying greater depth, indicative of a more
mature stage for the convective cell.

Figure 4 illustrates the analysis increments of relative hu-
midity at 2100 and 2300 UTC in Exp-ZDR. Focusing on the
tenth vertical level (around 2.5 km AGL) (Figs. 4a,b), there is
a noticeable enhancement of humidity fields within the re-
gions where ZDR columns are detected. Notably, larger incre-
ments are observed in Texas and Oklahoma compared to
Kansas. At 2300 UTC, the presence of high-density ZDR col-
umns leads to more substantial and concentrated increments
in qy. However, the no-rain assimilation scheme does intro-
duce some negative humidity increments in regions where the
background convection exhibits displacement errors. Examin-
ing the vertical cross-section of relative humidity increments
along 358N in Figs. 4c and 4d, it is evident that the moisture
increases in areas coinciding with ZDR columns. Moreover,
these increments in higher levels are more pronounced at
2300 UTC, aligning with the mature stage of the developing

FIG. 4. Analysis increments of relative humidity (shaded; %) and ZDR (green contours; 1 dB) at the tenth model
level at (a) 2100 and (b) 2300 UTC, accompanied by a vertical cross section at (c) 2100 and (d) 2300 UTC along the
black line in (a) and (b). The blue lines in (c) and (d) indicate the 08C level. Additionally, the black contour in (c) and
(d) represents a relative humidity of 98%.
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squall-line system. These humidity increments collectively
highlight that the assimilation of ZDR columns serves to en-
hance qy analysis within the convection.

b. Sensitivity of observation errors

The 3DVar method offers distinct advantages over cloud
analysis by incorporating background information into the
analysis through background and observation error cova-
riances. This subsection is dedicated to exploring the sensi-
tivity of the DA and forecast to pseudo-qy observation errors.
For Exp-ZDR, Exp-ZDR-Err1p0, and Exp-ZDR-Err2p0,
the observation errors are set to 0.5, 1.0, and 2.0 g kg21,
respectively.

To evaluate the performance of the 3DVar system in assim-
ilating qy retrievals from the ZDR columns, we first calculate
the root-mean-square innovations (RMSI) of both the analy-
sis and forecasts of qy during the DA cycles for Exp-CNTL,
Exp-ZDR, Exp-ZDR-Err1p0, and Exp-ZDR-Err2p0. The RMSI
metric serves to quantify the evolution of the innovations, which

denotes the discrepancy between the observations (here the
pseudo-qy) and the model states modified by assimilation.
The RMSIs are computed within the region where the
pseudo-qy observations exceed 1.0 g kg21. Exp-CNTL dem-
onstrates the highest RMSIs, and these values rise in tan-
dem with the evolution of the squall-line system (Fig. 5).
Notably, while RMSIs for the forecast and analysis in all three
ZDR experiments exhibit a zigzag pattern across cycles, the in-
corporation of pseudo-qy observations from ZDR columns re-
sults in significantly smaller RMSIs compared to Exp-CNTL.
It is evident that the analysis from three ZDR experiments
closely aligns with the pseudo-qy observations. This alignment
between the analysis and observations also results in lower
RMSIs for the forecasts, proving the stable performance of
the pseudo-qy assimilation.

Utilizing the RMSIs for both the forecasts and analyses, we
recalculate the observation error for pseudo-qy from ZDR col-
umns using the method proposed by Desroziers et al. (2005),
which is calculated by the statistical expectation of the cross-
product between O 2 A (here O denotes observation, A
denotes analysis) difference and the O 2 B (B denotes back-
ground) difference. This recalculation yields an estimated ob-
servation error of 0.635, 0.502, and 0.500 g kg21 using the
samples from Exp-ZDR-Err2p0, Exp-ZDR-Err1p0 and
Exp-ZDR, respectively, with the latter two very close to the
0.5 g kg21 employed in Exp-ZDR. Therefore, we opted to
keep the observation error for pseudo-qy observations from
ZDR columns for three other real data cases in this study at
0.5 g kg21.

Figure 6 depicts the fractions skill scores (FSS; Roberts and
Lean 2008) for the 0–3-h composite reflectivity forecasts dur-
ing the assimilation cycles from 2000 to 2300 UTC, utilizing
an neighborhood radius of 12 km. For the 20-dBZ threshold
(Fig. 6a), all three ZDR experiments exhibit similar FSS values,
consistently outperforming the Exp-CNTL without ZDR assimi-
lation. At the 40-dBZ threshold, the three ZDR experiments are

FIG. 6. Fractional skill scores of 0–3-h composite reflectivity forecasts for (a) 20- and (b) 40-dBZ thresholds over
the entire forecast cycles for Exp-CNTL, Exp-ZDR, Exp-ZDR-Err1p0, and Exp-ZDR-Err2p0. The output frequency
is 15 min. The neighborhood radius is set to 12 km.

FIG. 5. RMSIs of forecast (higher values in the sawtooth-shaped
curves) and analysis (lower values) for qy (g kg21) during 4-h as-
similation cycles of Exp-CNTL, Exp-ZDR, Exp-ZDR-Err1p0, and
Exp-ZDR-Err2p0.
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consistently better than Exp-CNTL. Notably, Exp-ZDR demon-
strates slightly higher FSS values across most cycles compared to
Exp-ZDR-Err1p0 and Exp-ZDR-Err2p0, implying that a
smaller observation error for the pseudo-qy observations would
yield greater benefits forZDR column assimilation.

c. Sensitivity to horizontal decorrelation scale

In CJ17, the adjustment of qy in surrounding columns was
directly based on the depth of the ZDR columns. The 3DVar
method has the capacity to distribute observations in the
model space through spatial correlations, which are defined
by the decorrelation scale in the BEC. As a result, we investi-
gate the effects of different horizontal decorrelation scales on
the assimilation of pseudo-qy observations from ZDR columns
and its subsequent impact on forecasts. In these experiments,
we set the horizontal decorrelation scales to 6, 12, and 18 km
for Exp-ZDR, Exp-ZDR-Len12, and Exp-ZDR-Len18, re-
spectively, while maintaining a fixed vertical decorrelation

scale of 2 km. Although the vertical decorrelation scale’s impact
was also tested, it was found to be less sensitive compared
to the horizontal scale, so those results are not presented in
this study.

Figure 7 shows FSSs and frequency bias for the 0–3-h com-
posite reflectivity forecasts across four assimilation cycles
spanning from 2000 to 2300 UTC for Exp-CNTL, Exp-ZDR,
Exp-ZDR-Len12, and Exp-ZDR-Len18. The assimilation of
qy derived from ZDR columns is notably sensitive to the hori-
zontal decorrelation scale. For the lower 20-dBZ threshold,
larger horizontal length scales result in higher FSS values
at an expense of overestimation in Exp-ZDR-Len12 and
Exp-ZDR-Len18. However, at the 40-dBZ threshold, Exp-
ZDR demonstrates higher FSS values and frequency bias
closer to 1 compared to Exp-ZDR-Len12 and Exp-ZDR-
Len18, with Exp-ZDR’s superiority steadily increasing with
the assimilation cycles, while the FSS of the Exp-ZDR-Len12
and Exp-ZDR-Len18 even drops to below Exp-CNTL due to

FIG. 7. (a),(b) Fractional skill scores and (c),(d) frequency bias of 0–3-h composite reflectivity forecasts for
(a),(c) 20- and (b),(d) 40-dBZ thresholds over the entire forecast cycles for Exp-CNTL, Exp-ZDR, Exp-ZDR-Len12,
and Exp-ZDR-Len18. The output frequency is 15 min. The neighborhood radius of FSSs used is 12 km.
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the overestimation, indicated by their much larger high-frequency
bias scores.

To find the reason behind the decrease in forecast skill for
high reflectivity regions when employing longer decorrelation
scales, we compare the hourly accumulated precipitation against
the NCEP’s Stage-IV product and the temporal evolution
of domain-averaged rain rate for the four experiments.
These values are averaged over four DA cycles spanning
from 2000 to 2300 UTC, and the results are presented in
Fig. 8.

It is quite remarkable that Exp-ZDR closely aligns with the
observed precipitation, while Exp-CNTL underestimates the
precipitation, and both Exp-ZDR-Len12 and Exp-ZDR-
Len18 overestimate it (Fig. 8a). In the case of Exp-CNTL,
there is a noticeable reduction in precipitation rate during the
first 15–30-min integration period (Fig. 8b). This phenomenon
can be attributed to the added hydrometeors, which quickly
fall out and cannot be sustained without appropriate humidity
conditions. Thanks to the assimilation of ZDR columns, this
sharp reduction in precipitation rate is not observed in the
other three experiments (Fig. 8b). However, both Exp-ZDR-
Len12 and Exp-ZDR-Len18 exhibit an initial surge in precipi-
tation rate during the first hour, followed by a gradual decline.
This behavior arises due to the larger decorrelation scale
spreading the qy increments over a wider region. Consequently,
excessive humidity accumulates, leading to a rapid increase
in precipitation rate and a subsequent overprediction of total
rainfall. In comparison, Exp-ZDR maintains a stable precipi-
tation rate throughout the entire 3-h forecast. This stability
suggests that a decorrelation scale of 6 km is optimal for as-
similating pseudo-qy observations from ZDR columns, as it
ensures an accurate and well-balanced representation of the
moisture fields.

d. Sensitivity to the assimilation frequency

In this subsection, we investigate the sensitivity of the DA
and forecast to the assimilation frequency of pseudo-qy obser-
vations derived from ZDR columns. Specifically, we consider

assimilation frequencies of 15, 30, and 60 min for Exp-ZDR,
Exp-ZDR-30m, and Exp-ZDR-60m, respectively.

Figure 9 illustrates the 1–3-h composite reflectivity forecasts
initialized at 2300 UTC (the final assimilation cycle) for Exp-
CNTL and the three ZDR sensitivity experiments. In the 1-h
forecast Exp-CNTL accurately predicts the squall-line system
in the north of Oklahoma (system A in Fig. 9a), while the
three ZDR experiments exhibit a western bias (comparing the
first column of Fig. 9). However, Exp-CNTL incurs substan-
tial location errors for the northern cells in Texas (system B),
which are gradually mitigated with increasing assimilation fre-
quency of qy retrievals from ZDR columns. As for the 2-h
forecast, all four experiments predict a similar squall-line sys-
tem in Oklahoma. Notably, the assimilation of ZDR columns
leads to reduced location errors and heightened convective
cell intensities in Texas, especially for system B (Figs. 9h,k,n).
This trend continues in the 3-h forecast (Figs. 9i,l,o), where
Exp-CNTL presents a distinct eastern bias in the convection
of system B, spanning from the center of Oklahoma to the
northern part of Texas (Fig. 9f). Furthermore, increasing
the assimilation frequency of pseudo-qy observations from
ZDR columns results in improved forecast accuracy, particu-
larly in terms of reducing location errors and enhancing
the representation of convective systems in the forecasted
squall line.

Figure 10 provides the temporal evolution of the fractions
skill scores (FSS) for 0–3-h composite reflectivity forecasts
against the composite reflectivity observation, throughout
four assimilation cycles spanning 2000–2300 UTC 20 May.
For the 20-dBZ threshold, all three ZDR experiments consis-
tently outperform Exp-CNTL with superior FSS values. Nota-
bly, Exp-ZDR, the experiment with highest assimilation
frequency of pseudo-qy observations has the largest FSS val-
ues. For the 40-dBZ threshold, the observed trend remains
consistent with the 20-dBZ results. The benefits of Exp-ZDR
are more prominently displayed and remain stable across the
assimilation cycles. These results affirm that the assimilation
of pseudo-qy observations from ZDR columns positively

FIG. 8. (a) Hourly accumulated precipitation (mm) averaged over four cycles from 2000 to 2300 UTC from four ex-
periments and the corresponding NCEP’s Stage-IV products. (b) Rain rate (mm h21) averaged over four cycles for
the 180-min forecast period for Exp-CNTL, Exp-ZDR, Exp-ZDR-len12, and Exp-ZDR-len18.
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FIG. 9. (a)–(c) Observed composite reflectivity, and the corresponding 1–3-h forecasts initial-
ized from 2300 UTC 20 May 2019 in (d)–(f) Exp-CNTL, (g)–(i) Exp-ZDR, (j)–(l) Exp-ZDR-
30m, and (m)–(o) Exp-ZDR-60m at (left) 0000, (center) 0100, and (right) 0200 UTC, respectively.
The black contours indicate the observed composite reflectivity of 40 dBZ. For the reader’s
convenience, we have distinguished the three different clusters labeled as A, B, and C and the
differences between Exp-CNTL and Exp-ZDR are highlighted in red circles.
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contributes to the forecast accuracy, particularly when a
higher DA frequency is employed.

Figure 11 provides a closer look at the impact of high-
frequency assimilation of ZDR columns on short-term pre-
dictions, focusing on the precipitable water vapor (PWV) analy-
sis at 2000 and 2300 UTC. At 2000 UTC, Exp-ZDR exhibits
elevated PWV values over Oklahoma and Texas, regions
closely associated with severe weather occurrences (Fig. 11b).

By 2300 UTC, the cumulative effect of cycling assimilation be-
comes more evident, with noticeable disparities between the
four experiments. Relative to Exp-CNTL, the assimilation of
pseudo-qy observations from ZDR columns results in greater
PWV analysis within the Oklahoma squall-line system and
Texas supercells (Figs. 11f–h). This enhancement becomes
even more pronounced with the 15-min assimilation frequency
employed in Exp-ZDR (Fig. 11f). Elevated PWV levels in these

FIG. 10. Fractional skill scores of 0–3-h composite reflectivity forecasts for (a) 20- and (b) 40-dBZ thresholds over the en-
tire forecast cycles for Exp-CNTL,Exp-ZDR,Exp-ZDR-30m, andExp-ZDR-60m. The neighborhood radius is 12 km.

FIG. 11. Precipitable water vapor (shaded; g m22) at (a)–(d) 2000 and (e)–(h) 2300 UTC for (a),(e) Exp-CNTL; (b),(f) Exp-ZDR;
(c),(g) Exp-ZDR-30m; and (e),(h) Exp-ZDR-60m. The black contours indicate the observed composite reflectivity of 40 dBZ.
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convective regions are expected to contribute to improved fore-
cast accuracy for accumulated precipitation, especially for heavy
rainfall.

Figure 12 offers insights into the impact of cycling assimila-
tion of ZDR columns on 1-h forecasts of surface winds and
temperature for the final assimilation cycle across the four ex-
periments. The fast-moving storms generate descending air-
flow behind the leading edge of these storms, which reaches
the surface and leads to the formation of cold pools. All ex-
periments predict cold pools and diverging winds near the
convections in Texas. However, Exp-CNTL exhibits a weaker
cold pool intensity near the central convections and shows
obvious displacement errors. This situation gets improved
when qy retrievals from ZDR columns are assimilated. With
an increase in assimilation frequency, the intensity of wind
gusts and cold pools gradually rises, leading to a corre-
sponding reduction in displacement errors. In general, the
15-min cycling assimilation of pseudo-qy observations from
ZDR columns bolsters the convection by providing stronger
surface-level cold pools and wind divergence. This, in turn,

contributes to the improved short-term forecasting of con-
vective cells.

5. Multiple case evaluation

In this section, the study progresses with the quantitative
evaluation of four severe weather cases. The optimal configu-
ration determined from the sensitivity experiments, which
focused on observation error, decorrelation scale, and assimi-
lation frequency for qy retrievals from ZDR columns with the
squall-line case on 20 May 2019, is employed to gauge the en-
hanced predictive capabilities brought about by the assimila-
tion of pseudo-qy observations from ZDR columns in short-
term severe weather forecasts. This comprehensive evaluation
aims to further ascertain the added value of ZDR column as-
similation in improving the accuracy of forecasts for severe
weather events.

Figure 13 provides insights into the predictive performance
through categorical performance diagrams (Roebber 2009)
for the four severe weather cases. These diagrams incorporate

FIG. 12. 1-h forecasts of surface temperature (shaded; 8C) and winds (vectors; m s21) initialized from 2300 UTC
20May 2019. The brown contour indicates the observed composite reflectivity of 45 dBZ.
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various metrics such as probability of detection (POD), criti-
cal success index (CSI), frequency bias (BIAS), and success
ratio (SR) to evaluate forecast accuracy. For the 20-dBZ
threshold, assimilating ZDR columns contributes to substantial
enhancements in the 22 and 20 May cases, manifesting as in-
creased POD and CSI. Although the improvements are
slightly more moderate for the other two cases, Exp-ZDR
consistently demonstrates superior forecast skills compared to
Exp-CNTL. Furthermore, the magnitude of the biases, shown
as ratios on the diagonal lines of Fig. 13, are notably reduced
in Exp-ZDR, moving it closer to an ideal value of 1. For the
40-dBZ threshold, Exp-ZDR consistently surpasses Exp-
CNTL across all four cases, exhibiting higher POD, CSI, and
improved BIAS alignment with the optimal value of 1. This
affirms the positive impact of assimilating pseudo-qy observa-
tions from ZDR columns on the short-term composite reflec-
tivity forecasts over a 0–3-h period.

Figure 14 provides a consolidated view of the averaged FSS
and frequency bias for reflectivity forecasts across the four se-
vere weather cases, including the entire 3-h forecast period,
evaluated for both the 20- and 40-dBZ thresholds. For the
20-dBZ threshold, Exp-ZDR substantially outperforms Exp-
CNTL, exemplified by noticeably higher FSSs and closer
frequency bias to 1.0 for the entire duration of forecasts. This
indicates that the inclusion of ZDR column assimilation con-
tributes to a more accurate forecast of composite reflectivity
over time. For the 40-dBZ threshold, Exp-ZDR also shows a
performance advantage over Exp-CNTL over the entirety of
the 3-h forecast period. While the gap in performance be-
tween Exp-ZDR and Exp-CNTL narrows with leading time,
Exp-ZDR consistently maintains higher FSSs and larger fre-
quency bias scores despite slight overestimation. This under-
scores that assimilating pseudo-qy observations from ZDR

columns leads to improved forecasts regarding the intensity of
convection.

In Fig. 15, the case-averaged FSSs and frequency bias for
the hourly accumulated precipitation forecasts are depicted,
comparing Exp-CNTL and Exp-ZDR against Stage-IV pre-
cipitation data. Over the 3-h forecast window, Exp-ZDR con-
sistently displays higher FSS values than Exp-CNTL for
various precipitation thresholds (1, 2.5, and 5 mm), reflecting
improvements in the occurrence and spatial distribution of
light to moderate precipitation. For the 10-mm threshold,
Exp-ZDR attains higher FSS values than Exp-CNTL in the
1- and 2-h forecasts, accompanied by an acceptable level of
overestimation. In essence, assimilating pseudo-qy observa-
tions from ZDR columns positively impacts the accuracy of
short-term precipitation forecasts.

6. Conclusions

The ZDR column, a distinctive polarimetric radar signature,
serves as a valuable indicator of updrafts in deep moist con-
vection. In this study, pseudo-qy observations are obtained by
assuming that the qy field between LCL and cloud top is satu-
rated within the detected ZDR column region. These retrievals
are subsequently assimilated using the 3DVar method, which
provides initial conditions for the convective-scale WRF
model. The effects of assimilating ZDR columns are initially
assessed through a case study involving a squall-line event on
20 May 2019. The optimal assimilation configuration is deter-
mined through a series of sensitivity experiments. Further-
more, experiments for four severe weather cases in May 2019
are conducted to comprehensively evaluate the impact of as-
similating pseudo-qy observations from ZDR columns on
short-term severe weather forecasting.

The analysis of the 20 May 2019 squall-line case reveals
that ZDR columns appear in the mature regions of convective
systems, with some also observed in developing convection.
Sensitivity experiments are conducted to evaluate the impact

FIG. 13. Performance diagrams for composite reflectivity forecasts for each case at thresholds of (a) 20 and (b) 40 dBZ
with a neighborhood radius of 12 km. Black and purple lines represent constant BIAS and CSI, respectively. Digits on
the dots indicate the hour into the forecast.
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of different factors on the assimilation of pseudo-qy observa-
tions from ZDR columns.

1) Observation errors sensitivity: The experiments indicate
that short-term forecasts are not highly sensitive to obser-
vation errors. Nevertheless, the smaller observation error
(0.5 g kg21) lead to a better analysis and forecast of this
squall-line case.

2) Horizontal decorrelation scale sensitivity: The experiments
reveal that a relatively shorter horizontal decorrelation scale
(6 km) yields higher forecast skill. Larger decorrelation
scales (12 and 18 km) lead to rapid increases in predicted
rain rates during the first hour of the forecast, resulting in
overestimated precipitation and decreased forecast skill.

3) Assimilation frequency sensitivity: The experiments demon-
strate that frequent assimilation (15-min cycling) of pseudo-qy
observations produces stable improvements in both re-
flectivity and precipitation forecasts. The high-frequency

assimilation enhances the precipitable qy within convective
regions and strengthens cold pools and surface divergent
winds, creating more favorable conditions for convection.

Overall, these sensitivity experiments underscore the value
of assimilating pseudo-qy observations from ZDR columns,
highlighting the need for accurate observation errors, optimal
horizontal decorrelation scales, and high assimilation frequen-
cies to maximize the positive impact on short-term forecasts
of severe weather events.

The quantitative evaluation of four severe weather cases in
May 2019 using the optimal assimilation configuration derived
from the sensitivity experiments provides valuable insights
into the impact of assimilating pseudo-qy observations from
ZDR columns. Performance diagrams and FSSs illustrate that
assimilating pseudo-qy observations from ZDR columns helps
enhance the accuracy and skill of the forecasting system, ulti-
mately leading to improved severe weather predictions.

FIG. 14. Fractional skill scores and frequency bias of 0–3-h composite reflectivity forecasts for (a),(c) 20- and
(b),(d) 40-dBZ thresholds averaged over the entire forecast cycles of four cases. Error bars represent the 95% confidence
intervals. The output frequency is 15 min. The neighborhood radius of FSSs is 12 km.
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Even though promising results are obtained, the assimila-
tion of pseudo-qy observations from ZDR columns should be
evaluated through more cases so that robust conclusions can
be made. Expanding the assimilation approach to include
other retrieved variables, such as temperature and vertical ve-
locity derived from ZDR columns, or other polarimetric signa-
tures of updrafts, such as KDP columns (e.g., van Lier-Walqui
et al. 2016), may provide valuable avenues for future re-
search. It would also be interesting to compare the direct as-
similation of ZDR with the indirect assimilation of the
retrievals using the ensemble DA method. Besides, the use
of a hybrid ensemble-variational method can provide a
more balanced analysis by incorporating both ensemble-
based and variational-based assimilation techniques. This
could potentially address limitations of the climatology-
based background error covariance and better capture the
dynamics and flow-dependent relationships between variables.
Finally, improved automated detection methods for ZDR col-
umns (e.g., Krause and Klaus 2023) will more easily facilitate
their assimilation in the future. Overall, continued research and
experimentation in this area will likely lead to advancements in
our understanding of DA techniques and their applications in
short-term severe weather forecasting.
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